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A B S T R A C T

Regulation of translation represents a critical step in the regulation of gene expression. In plants, the translation
regulation plays an important role at all stages of development and, during stress responses, functions as a fast
and flexible tool which not only modulates the global translation rate but also controls the production of specific
proteins. Regulation of translation is mostly focused on the initiation phase. There, one of essential initiation
factors is the large multisubunit protein complex of eukaryotic translation initiation factor 3 (eIF3). In all eu-
karyotes, the general eIF3 function is to scaffold the formation of the translation initiation complex and to
enhance the accuracy of scanning mechanism for start codon selection. Over the past decades, additional eIF3
functions were described as necessary for development in various eukaryotic organisms, including plants. The
importance of the eIF3 complex lies not only at the global level of initiation event, but also in the precise
translation regulation of specific transcripts. This review gathers the available information on functions of the
plant eIF3 complex.

1. Introduction

Translation is an essential step for the expression of a gene, where
the information stored in nucleic acids is translated to a functional
polypeptide. The complex process of translation requires not only a
large amount of cell energy, different species of RNA molecules and
many ribosomal proteins, but also precise regulation. In plants, ex-
pression of several key developmental regulators, stress factors and
some other important groups of proteins is controlled at the transla-
tional level (Reviewed in Merchante et al., 2017). The amount of ex-
amples of such translationally regulated genes is currently rapidly ex-
panding, as the number of methods for measuring translation is getting
higher and these methods are constantly being improved and uncover
the translation universe in more detail (Reviewed in Mazzoni-Putman
and Stepanova, 2018).

Translation of mRNA on two-subunit ribosomes is a conserved
process amongst all organisms, requiring different kinds of RNA mo-
lecules and proteins with structural, enzymatic and regulatory function.
Complex series of processes within three main phases of translation;
initiation, elongation and termination,ensure the precise start, rapid
course and correct end of translation. While every step of translation is
potentially regulated, most of the regulatory mechanisms is centered in
the initiation phase where numerous translation initiation factors (eIFs)

(Table 1) ensure the mRNA-ribosome association, scanning of the
mRNA and start codon selection.

Initiation is the opening step of translation, achieved by the scan-
ning mechanism in eukaryotes (Reviewed in Hinnebusch, 2017, 2014;
Merrick and Pavitt, 2018), a process of subsequent steps that includes
many factors (Table 1), which undergo several structural rearrange-
ments within (Guca and Hashem, 2018). Initiation starts with formation
of the Ternary Complex (TC) from eIF2-GTP and initiating Met-
tRNAi

Met. The TC is then bound to a free 40S ribosomal subunit
alongside with eIF1, eIF1A, eIF3 and eIF5 to form the 43S pre-initiation
complex (43S PIC). In addition, eIF1, eIF2, eIF3 and eIF5 could pre-
assemble, independently on 40S subunit, forming the so-called multi-
factor complex (MFC). Free cytoplasmic MFC was observed in different
organisms, including plants (Dennis et al., 2009). Activated mRNA then
joins the 43S PIC along with associated proteins; eIF4E, eIF4A, eIF4B,
PABP and eIF4G, to form 48S pre-initiation complex (48S PIC) (Villa
et al., 2013). The 48S PIC starts then the scanning of the 5′UTR until the
start codon is reached in the favorable Kozak consensus of surrounding
nucleotides (Kozak, 1987). The following release of the majority of
initiation factors sets the 48S PIC ready to be bound with the 60S
subunit. The 60S subunit joining is facilitated by eIF5B, resulting in the
80S Initiation Complex (80S IC), which proceeds to subsequent rounds
of elongation.
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A multisubunit complex of eukaryotic translation initiation factor 3
is the largest of all eIFs. The eIF3 complex was first isolated from rabbit
reticulocytes in the 1970′s and since then, 12 non-identical eIF3 sub-
units have been identified (Benne and Hershey, 1976; Reviewed in
Cate, 2017). In the beginning of the 21st century, a unified letter no-
menclature for eIF3 subunits was proposed instead of using their re-
spective molecular weight (Browning et al., 2001; Burks et al., 2001). In
canonical translation initiation, eIF3 plays the role of a scaffold protein
that binds and interacts with many other initiation factors. eIF3 parti-
cipates mainly in promoting the formation and assembly of the MFC,
43S PIC and 48S PIC, and is involved in the scanning and precise start
codon selection. The role of the eIF3 complex reaches further from the
translation initiation process to its regulation at global and specific
levels and in some other phases of translation as well (Valášek et al.,
2017). In the majority of studies, mammalian eIF3 and budding yeast
eIF3 complexes were examined. Described features from such research

are applicable to other organisms as well, as high similarity homologues
of at least the minimal functional core of the eIF3 complex are present
in most, if not all eukaryotic organisms (Valášek et al., 2017).

Plant eIF3 complex architecture is similar to that of the mammalian
eIF3 (Browning et al., 2001; Burks et al., 2001; Li et al., 2016). Several
plant eIF3 subunits have been analyzed during the last 20 years using
mainly Arabidopsis as a model organism. Single subunit mutants pointed
to the importance of the eIF3 in translation regulation, being essential
for different stages of plant development or proper stress response.
Moreover, eIF3 is also an interacting partner of many viral proteins of
plant viruses that recruit the host translational machinery. However,
the knowledge about the exact regulation mechanisms pertained by
eIF3 in plants is still mostly unknown. This review gathers the current
knowledge for eIF3 complex and its subunits and their involvement in
the regulation of translation in flowering plants. Because of the lack of
precise structural eIF3 data from plants, preceding description of the
mammalian eIF3 structure and its function is presented for better un-
derstanding of the molecular context.

2. eIF3 complex

The eIF3 complex was found present in all eukaryotic organisms so
far. Although the overall conservation of the eIF3 is high, not all or-
ganisms kept the complete set of twelve subunits (Table 2). Sacchar-
omyces cerevisiae (S. cerevisiae) possess the most reduced eIF3 complex
identified so far consisting of five subunits (eIF3a, -3b, -3c, -3i, and -3g)
(Asano et al., 1998; Khoshnevis et al., 2012; Phan et al., 1998). Even
though so reduced, the yeast complex is still capable of performing the
eIF3 functions. In S. cerevisiae, protein named eIF3j is necessary for eIF3
binding to 40S, but is only loosely attached to the eIF3 complex and not
present in the purified yeast eIF3 complex (ElAntak et al., 2010; Valášek
et al., 2001). Therefore, it is considered an eIF3-associated factor
(Valášek et al., 2017). In higher eukaryotes, homologues of all five
yeast eIF3 subunits are found in the purified eIF3 complex, together
with seven additional subunits eIF3d, -3e, -3f, -3h, -3k, -3l and -3m
(Smith et al., 2013; Zhou et al., 2008). eIF3-associated protein eIF3j
seems to have similar functions in mammals as its respective S. cerevi-
siae orthologue (Fraser et al., 2004; Smith et al., 2013). The composi-
tion of 12 subunits in the eIF3 complex was found to be similar in
Neurospora crassa, mammals and plants (Valášek et al., 2017). In evo-
lutionary diverged taxonomical supergroup Excavata, eIF3 composition
resembles the mammalian model in general, yetthere is no evidence of
presence of some eIF3 subunits in several inspected Excavata species
(Han et al., 2015; Meleppattu et al., 2015; Rezende et al., 2014). Ar-
chaea lack evidence for most eIF3 subunits, except of found homology
with eIF3i in Methanocaldococcus jannaschii (Rezende et al., 2014). No
homology for any eIF3 subunit has been found in Bacteria (Benelli and

Table 1
Overview of eukaryotic translation factors and their function in canonical
translation. Simplified from the list of Arabidopsis thaliana translation factors
in (Browning and Bailey-Serres, 2015).

Protein Function

Initiation factors (eIFs)
eIF1 PIC formation, scanning, AUG selection, controls eIF5

activity, promotes 40S open conformation
eIF1A PIC formation, scanning, AUG selection, promotes 40S

open conformation
eIF2 subunits α, β,

γ
Small GTPase, forms ternary complex with GTP and
Met-tRNAi

Met

eIF2B GDP-GTP recycling factor for eIF2
eIF3 12 subunits Formation of PIC, scanning and AUG recognition,

mRNA joining
eIF3j eIF3 associated factor, promotes eIF3 binding to 40S
eIF4A ATP-dependent helicase, unwinds secondary structure

of mRNA, binds mRNA to 40S
eIF4B Cofactor of eIF4A
eIF4F eIF4E

eIF4G
5′cap binding protein
Scaffold protein

eIF5 GTPase activating protein for eIF2, Met-tRNAi
Met

placement on AUG
eIF5B Joining of 60S subunit, GTPase
PABP Binds poly (-A) tail, interacts with eIF4G
Elongation factors (eEFs)
eEF1A small GTPase, binds aminoacyl tRNA and GTP
eEF1B subunits α, β,

γ
Recycling factor of eEF1A

eEF2 tRNA and mRNA translocation
Release factors (eRFs)
eRF 1 Termination/peptide release
eRF 3 Termination/peptide release
ABCE1 Ribosome recycling

Table 2
eIF3 subunit composition in different organisms. eIF3-associated protein eIF3j is not included, as it is not considered a canonical eIF3 subunit. Modified from
(Valášek et al., 2017), with respect to (Li et al., 2016) and (Li et al., 2017).

Subunit Domains, motives Organism

S.cerevisiae S.pombe T.brucei H.sapiens A.thaliana O.sativa

eIF3a PCI x x x x x x
eIF3b WD40, RRM x x x x x x
eIF3c PCI x x x x x x
eIF3d 5′cap binding? x x x x x
eIF3e PCI x x x x x
eIF3f MPN x x x x x
eIF3g RRM, Zn finger x x x x x x
eIF3h MPN x x x x x
eIF3i WD40 x x x x x x
eIF3k PCI x x x x
eIF3l PCI x x x x
eIF3m PCI x x x x
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Londei, 2011; Rezende et al., 2014), corresponding well with the fact
that neither Bacteria nor Archaea initiate translation by the scanning
mechanism as eukaryotes.

In recent years, the structure of eIF3 has been solved in contexts of
PIC in various stages of initiation in yeast (Aylett et al., 2015; Erzberger
et al., 2014; Korostelev, 2014) and in mammals (des Georges et al.,
2015; Eliseev et al., 2018; Hashem et al., 2013a; Querol-Audi et al.,
2013; Simonetti et al., 2016), together with the biochemical data of
proposed eIF3 subunit assembly and mutual interactions (Herrmannová
et al., 2012; Khoshnevis et al., 2012; Masutani et al., 2007; Sun et al.,
2011; Wagner et al., 2016, 2014; Zhou et al., 2005, 2008). The mam-
malian model of eIF3, considered similar to the plant eIF3 complex, is
divided into two structural modules: a PCI/MPN Octamer and a Yeast-
Like Core (YLC) (Fig. 1). The PCI/MPN octamer is formed from eight
subunits; eIF3a, -3c, -3e, -3f. -3h, -3k, -3l and -3m. The formation of the
Octamer is enabled by a scaffold structure of 6 subunits (eIF3a, -3c, -3e,
-3k, -3l and -3m) containing a PCI (Proteasome, CSN, eIF3) domain and
2 subunits (-3h and -3f) containing a MPN (for Mpr1-Pad1-N-terminal)
domain (Querol-Audi et al., 2013; Siridechadilok et al., 2005). The
structure of the Octamer is stabilized by two interaction hubs; first
being the PCI domains forming a structure known as β-sheet arc, and
second being a helical bundle in which every subunit of the octamer
joins with one of its C-terminal α-helix (des Georges et al., 2015). Si-
milar structure of PCI/MPN domains and helical bundle is shared be-
tween two other large protein complexes; COP9 signalosome (CSN) and
the 26S proteasome lid (Ellisdon and Stewart, 2012; Enchev et al.,
2010; Pick et al., 2009). The second module, YLC, consists of subunits
eIF3b, -3i and -3g. All these three subunits are present in the reduced S.
cerevisiae eIF3 complex. Both modules are connected via the interaction
of -3a and -3b subunits. Recent structural study done with the recon-
stituted yeast eIF3 complex suggest that the N-terminal part of eIF3c
interacts with eIF3b as well, which would mean that eIF3 could form, at
least in some phase of the initiation process, a complete circle around
the small ribosomal subunit (Llacer et al., 2018). The assembly of the

whole eIF3 has a hierarchical order, although different methodology
approaches gave slightly different results. One assembly order was
proposed by Wagner and co-workers in 2016 (Wagner et al., 2016). In
this model, eIF3a binds eIF3b as the nucleation core, then subunits of
the YLC module (-3i, -3g and -3b) join and form a subcomplex that
alone is already able to bind to 40S and recruit activated mRNA in vivo
in mammals (Wagner et al., 2014). Assembly of other PCI/MPN domain
containing subunits of the Octamer proceeds. Twelfth subunit, eIF3d,
was found to be bound to the eIF3e subunit (Wagner et al., 2016).
Although in this model, the proposed nucleation core is the -3a/-3b
dimer and the YLC is considered a prerequisite for the ongoing Octamer
assembly, the whole human PCI/MPN Octamer was onlyreconstituted
in vitro and the initial dimer of -3a/-3c was proposed as the main nu-
cleation core (Sun et al., 2011). In this case, YLC subunits completed the
whole complex when added later on. It could be elucidated that both
modules might be formed independently on each other, and that the
reduced S. cerevisiae complex probably represents the functional core
needed for basal translation initiation. Moreover, variable functional
eIF3 subcomplexes were observed in some of the aforementioned ex-
periments as well as in recent reconstitution of Neurospora crassa eIF3
(Smith et al., 2016), increasing the possibilities of translation initiation
modularity.

The canonical eIF3 function in the translation initiation is to scaf-
fold all the necessary factors, small ribosomal subunit and the mRNA
together. This paragraph gives a description of the initiation phase from
the perspective of the eIF3 in more detail. eIF3 alone is able to bind to
40S subunit as it prevents the precocious 40S and 60S association
(Kolupaeva et al., 2005). After binding to the 40S subunit, eIF3 en-
hances joining of the TC, eIF1, eIF1A, eIF5 (Valášek, 2012). Moreover,
eIF3 also participates in the forming of the MFC. The MFC then loads
the Met-RNAi

Met on the 40S (Sokabe et al., 2012). In the MFC assembly,
the N-terminal domain of the eIF3c subunit facilitates interactions with
other MFC factors (Karásková et al., 2012; Obayashi et al., 2017). In the
assembling 43S PIC, eIF3 encircles the 40S subunit in a clamp-like
fashion. The Octamer module is bound to the 40S on the solvent side
with eIF3a N-terminal domain (NTD) reaching to the mRNA exit
channel, and YLC module placed on the intersubunit side near the
mRNA entry channel (des Georges et al., 2015), where interactions with
the 40S are maintained by a 9-bladed β-propeller structure of eIF3b (Liu
et al., 2014). Then, eIF3 is necessary for loading the mRNA to the 43S
PIC (Mitchell et al., 2010). The recruitment of mRNA to PIC is enabled
by the direct binding of the eIF4G to a surface made from eIF3 subunits;
-3c, -3d, -3e (Villa et al., 2013). eIF3a interacts directly with the mRNA
at the mRNA exit channel (Pisarev et al., 2008), thus stabilizing the
mRNA on both entry and exit channels (Aitken et al., 2016). The pro-
cessivity of scanning and stringent AUG recognition seems to also be
enhanced by eIF3, presumably by stabilizing the mRNA conformation
in the scanning (Aitken et al., 2016; Chiu et al., 2010; Cuchalová et al.,
2010; ElAntak et al., 2010; Karásková et al., 2012; Obayashi et al.,
2017; Valášek et al., 2017). Having been analyzed by recent structural
studies, the whole YLC module undergoes structural rearrangements on
40S during mRNA binding, relocating from the solvent exposed site to
the intersubunit surface, thus stabilizing the interaction of the scanning
complex (Eliseev et al., 2018; Llacer et al., 2018; Simonetti et al., 2016).
Upon AUG recognition, YLC is relocated back to the solvent exposed
site. This rearrangement seems to be triggered by a conformational
change of eIF2 (Eliseev et al., 2018).

Apart from translation initiation, additional functions were de-
scribed for eIF3 during translation termination, recycling and some
non-canonical translational events (Valášek et al., 2017), such as re-
initiation after upstream open reading frames (uORFs) (Mohammad
et al., 2017). In S. cerevisiae, eIF3a promotes reinitiation after the re-
cognition of the secondary structure on the uORF (Gunišová et al.,
2018; Szamecz et al., 2008), while eIF3h promotes reinitiation in
mammals (Hronová et al., 2017) and plants (Kim et al., 2007; Zhou
et al., 2014). In yeast, eIF3 participates in stop codon read-through

Fig. 1. Simplified 2D cartoon model of the mammalian eIF3 relative subunit
position and interaction. The model shows the PCI/MPN domain Octamer, the
helical bundle interaction hub and the flexible YLC that is connected to the
Octamer module via eIF3a C terminal end. Modified from (Wagner et al., 2016).
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(Beznosková et al., 2013), ribosome recycling (Pisarev et al., 2007) or
the nonsense-mediated mRNA decay (Celik et al., 2017; Gupta and Li,
2018). Under stress conditions, eIF4F activity is inhibited and eIF3 is
able to bind the 5′cap itself via eIF3d and eIF3l subunits (Kumar et al.,
2016; Lee et al., 2016). Moreover, eIF3 can bind transcripts encoding
cell growth, differentiation or apoptosis proteins (Lee et al., 2015), and
transcripts containing N6-methyladenosine (m6A) in their 5′ UTR
(Meyer et al., 2015). Internal ribosome entry site-like (IRES-like) con-
taining transcripts also frequently need eIF3 for translation initiation
(Hashem et al., 2013b; Sun et al., 2013). DHX29 helicase interacts with
the RNA recognition motif (RRM) of eIF3b and C-terminal domain of
eIF3a to cooperate in scanning on complicated secondary structures in
5′UTRs (Pisareva and Pisarev, 2016).

3. The plant eIF3 complex

The plant eIF3 complex is a complex of 12 subunits in Arabidopsis
thaliana, Triticum aestivum and Oryza sativa (Browning et al., 2001;
Burks et al., 2001; Li et al., 2016), resembling the mammalian complex,
suggesting from similarities in stoichiometric subunit composition,
domain conservation and overall conservation of the eIF3 complex in
the eukaryotic kingdom. However, as plants diverged in the evolution,
additional specific functions of individual eIF3 subunits might have
diverged. And indeed, studies of some of the individual plant eIF3
subunits already presented several regulatory functions that are addi-
tional to the basic function in translation initiation.

Arabidopsis thaliana, a model for plant eIF3 research, contains 19
coding sequences for eIF3 complex subunits in its genome (Table 3).
Five eIF3 subunits are encoded by a single gene; eIF3a, -3e, -3f, -3h, -3k,
and the remaining seven subunits are encoded by two genes; eIF3b, -3c,
-3d, -3g, -3i, -3l, -3m (Browning and Bailey-Serres, 2015). The following
section summarizes available information about eIF3 in plants. The
general expression pattern of eIF3s resembles that of a house-keeping
gene with highest expression in proliferating tissues (e.g. apical mer-
istems, leaf primordia, inflorescences, developing anthers and germi-
nating seeds) that demand new pool of translational machinery.

3.1. eIF3a

eIF3a is the largest plant eIF3 subunit with a conserved PCI domain,
considered essential in mammals and yeast (Valášek et al., 2017). In
Arabidopsis, eIF3a is encoded by a single gene. Up to date, no evidence
of any plant mutant of the eIF3a subunit has been reported. AtEIF3A
protein was recognized in several high throughput studies as an inter-
acting partner of histone deacetylase GCN5 (Servet et al., 2008), sub-
strate of phosphorylation during the shift from light to dark (Boex-
Fontvieille et al., 2013), a ubiquitin-conjugate protein (Kim et al.,
2013), a mRNA binding protein (Reichel et al., 2016), and also as part
of RNA storage particles in tobacco pollen (Hafidh et al., 2018; Honys
et al., 2009). Another interaction of AtEIF3A was discovered with plant

reinitiation supporting protein (RISP), factor participating in the
translational reinitiation after long translated segment on the Cauli-
flower mosaic virus (CaMV) mRNA (Thiébeauld et al., 2009). A Chinese
study presented OsEIF3A as a gene expressed in various Oryza sativa
tissues, strongly in root tips, leaf or in stigma, and its expression being
induced by auxin (Li et al., 2003). As the eIF3a subunit has not been
fully characterized in plants, from the number of modifications de-
scribed we can only suggest on a strict regulation of the AtEIF3A.

3.2. eIF3b

eIF3b subunit is a part of the YLC module and is necessary for its
complete assembly. In Arabidopsis, eIF3b is encoded by two genes,
AtEIF3B1 and AtEIF3B2. Expression profiles of both genes follow the
general eIF3 pattern, with high transcript level in growing and pro-
liferating tissues (Linhart, 2017). Overall, the expression of AtEIF3B1 is
higher in tissues when compared to the AtEIF3B2. Homozygous ateif3b2
insertion mutant plants were delayed in plant development of the plant
(Linhart, 2017; Roy, 2010). On the contrary, ateif3b1 insertion mutant
plants were obtained only as heterozygote. Heterozygous ateif3b1
plants showed a higher frequency of aborted embryos and couldn't be
fully complemented by the weaker expression of the paralogue
AtEIF3B2 (Linhart, 2017). Double mutant hasn't been characterized yet.
Both Arabidopsis eIF3b subunits were found as substrates of phos-
phorylation in the light to dark shift response (Boex-Fontvieille et al.,
2013), and as part of RNA storage particles in tobacco pollen (Hafidh
et al., 2018; Honys et al., 2009).

3.3. eIF3c

eIF3c is another PCI domain containing subunit that is also part of
the yeast minimal eIF3 core. In Arabidopsis, eIF3c is encoded by two
genes, AtEIF3C1 and AtEIF3C2. Expression profile of the AtEIF3C1 is
similar with the common eIF3 expression pattern, whereas AtEIF3C2 is
generally expressed very low, except for expression during pollen de-
velopment and in the endosperm, where its expression is increased.
Characterization of eIF3c in Arabidopsis suggests that AtEIF3C1 is dis-
pensable during the male gametophyte development, where it is pre-
sumably complemented by higher expression of AtEIF3C2. The het-
erozygous insertion mutant ateif3c1 also showed defects in the embryo
development, leading to higher rate of seed abortion (Roy, 2010).
Arabidopsis and wheat eIF3c were shown to be phosphorylated on
multiple sites by CK2 kinase (Dennis et al., 2009), an essential and
highly conserved serine/threonine kinase that is involved in cell cycle
regulation, cell proliferation and apoptosis (Nuñez de Villavicencio-
Diaz et al., 2017). In plants, CK2 is under control of plant hormones and
affects plant development (Mulekar and Huq, 2014; Vilela et al., 2015).
Amongst other substrates, plant CK2 phosphorylates also eIF2, eIF5 and
eIF3c; which altogether enhances the interaction affinity between these
factors to increase the rate of MFC formation in cytoplasm (Dennis
et al., 2009). Another interaction discovered for Arabidopsis eIF3c was
its interaction with the RISP protein, a protein that increased the re-
initiation on CaMV mRNA (Thiébeauld et al., 2009).

3.4. eIF3d

eIF3d is bound to the Octamer module via the interaction with
eIF3e. There are two genes encoding eIF3d in Arabidopsis, AtEIF3D1
and AtEIF3D2. Insertion mutants for single subunit caused no apparent
phenotype defects. However, in the ateif3d1 insertion line, the T-DNA
insertion was located in the 3′ UTR and its expression was not affected
at all (Roy, 2010). Both genes show similar expression patterns in
Arabidopsis, peaking during microgametogenesis.

Table 3
Arabidopsis eIF3 subunits and their gene codes.

eIF3 subunit MW [kDa] Genes in Arabidopsis Gene codes

a 114.0 1 At4g11420
b 85.0 2 At5g27640, At5g25780
c 103.0 2 At3g56150, At3g22860
d 67.0 2 At4g20980, At5g44320
e 52.0 1 At3g57290
f 32.0 1 At2g39990
g 36.0 2 At3g11400, At5g06000
h 38.0 1 At1g10840
i 36.0 2 At2g46280, At2g46290
k 26.0 1 At4g33250
l 60.2 2 At5g25754, At5g25757
m 50.0 2 At3g02200, At5g15610
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3.5. eIF3e

eIF3e is a PCI domain containing subunit, encoded in Arabidopsis by
a single gene. The strongest expression of its transcript is observed in
rapidly growing tissues of SAM, leaf primordia, flowers, imbibed seeds
or during microsporogenesis (Linhart, 2017). The ateif3e insertion
mutant showed impaired pollen germination but not pollen devel-
opmentwhere pollen grains carrying the mutation rarely germinated
(Linhart, 2017; Roy, 2010; Roy et al., 2011). Also, the fitness of female
gametophyte was decreased in ateif3e mutant (Linhart, 2017). Inter-
estingly, the overexpression of the eIF3e lead to retardation defects
during seedling, vegetative and floral development. AtEIF3E was found
interacting with subunits of the 26S proteasome lid and COP9 signa-
losome (CSN) in plants (Karniol et al., 1998; Pick et al., 2009; Yahalom
et al., 2001), which is a relatively common phenomena, as its respective
orthologues suggest interactions between subunits of both these com-
plexes in fission yeast (Yen et al., 2003) or mammals (Hoareau Alves
et al., 2002). In AtEIF3E overexpressing lines, observed defects were
even similar to the mutations of COP9 signalosome (CSN) (Yahalom
et al., 2008). Moreover, AtEIF3E was not only shown to interact with
CSN subunit 7, but was also localized to the nucleus in photo-
synthetically active tissues (Yahalom et al., 2001). Based on these si-
milarities between ateif3e and csn7 mutants, overexpression and in vitro
analyses, AtEIF3E was proposed a substrate for CSN-dependent de-
gradation in the 26S proteasome and that it is a negative regulator of
translation in plants (Yahalom et al., 2008). Authors of this study
suggested that AtEIF3E is normally a part of the eIF3 complex and
contributes to the binding of eIF4G to the PIC. However, the excess of
free monomeric AtEIF3E inhibits the translation rate in vitro, pre-
sumably by binding to the 40S alone, impairing the ability of the whole
eIF3 complex to bind to the 40S subunit (Paz-Aviram et al., 2008;
Yahalom et al., 2008).

Rice OsEIF3E has very similar expression pattern to the Arabidopsis
orthologue, and shows an increased level of its transcript during cold
stress and in the ABA response. RNAi knockdown plants were mannitol
sensitive and had slower and dwarfish development, defects in pollen
maturation, reduced reproductive organ size and lowered seed biomass
(Wang et al., 2016). Moreover, OsEIF3E was found to form homodimers
and it was proposed that a possible self-regulating mechanism of di-
merization might decrease the inhibition effect of a monomer on
translation (Wang et al., 2016). OsEIF3E also interacts with inhibitors
of cyclin dependent kinases in vitro, also suggesting an unknown role in
cell cycle regulation (Wang et al., 2016). However, no further study
provides more detailed answers for these suggestions to be true.

3.6. eIF3f

eIF3f is an MPN domain containing subunit. eIF3f was characterized
in Arabidopsis thaliana and Oryza sativa, where is encoded by a single
gene (Li et al., 2016; Roy, 2010; Xia et al., 2010). In Arabidopsis, ex-
pression of AtEIF3F was observed in all tissues, the strongest expression
in pollen grains, inflorescences, root tips, developing embryos and
ovules (Xia et al., 2010). In a knockdown insertion ateif3f, pollen grains
were unable to germinate, although microsporogenesis and micro-
gametogenesis was unaffected (Xia et al., 2010). The embryo devel-
opment of the homozygous mutant, obtained by pollen rescue, showed
higher rates of abortion at different developmental stages. However,
some abnormal embryos still formed seeds and seedlings. These seed-
lings were malformed in stem shape and root system, lacked chlor-
ophyll, and were sensitive to sugar (Xia et al., 2010), very similarly to
the second MPN domain containing subunit mutant, eIF3h (Kim et al.,
2004), which is discussed in its respective chapter (3.8) . Xia et al.
further analyzed the transcriptome of homozygous mutant seedlings to
identify 3100 genes with significantly altered expression. The mutant
phenotype could then be at least partially explained by the down-
regulation of some genes important for sugar response (ASN1, ProDH2),

normal pollen tube growth and embryo development (CSLA7) or plastid
differentiation and chlorophyll synthesis (SCO1, NAP7, CAO) (Xia et al.,
2010). Authors in the study then conceded a lack of plant material from
homozygous seedlings to perform any protein analyses to compare the
transcript and protein level of the possible target genes (Xia et al.,
2010).

In rice, expression of OsEIF3F was the strongest in immature florets
and during anthers, pollen and seed development. RNAi knockdown of
OsEIF3F caused reduced seed production and male sterility but showed
no abnormalities in vegetative growth. Male sterility was a consequence
of decreased pollen viability. In contrast to the reduced pollen germi-
nation observed in Arabidopsis ateif3f, mutant rice oseif3f pollen grains
were arrested at various stages of microgametogenesis (Li et al., 2016).
Surprisingly, OsEIF3F expression analysis showed novel localization of
the OsEIF3F protein to the endoplasmic reticulum, leaving another
question mark for future research (Li et al., 2016).

3.7. eIF3g

eIF3g is a subunit that is part of the YLC module. Arabidopsis eIF3g
is encoded by two paralog genes, AtEIF3G1 and AtEIF3G2. Both para-
logs are expressed in all plant tissues and follow the pattern of higher
expression in active proliferating tissues. AtEIF3G1 transcript level is
higher than AtEIF3G2. No defects have been observed in single gene
insertion lines for both genes, suggesting possible redundancy (Roy,
2010). However, no characterization of double mutant line has been
described up to date.

The Triticum aestivum TaEIF3G has been shown to play an important
role in abiotic stress response and tolerance. TaEIF3G expression was
highly increased during drought, cold, high osmolarity and high salinity
stress and induced by brassinosteroids and salicylic acid (Singh et al.,
2013, 2007). TaEIF3G overexpression in Arabidopsis increased the
tolerance to drought, osmotic and salinity stress, increased concentra-
tion of soluble proteins and stress hormone abscisic acid, provided
better stability of PSII under stress conditions and decreased levels of
oxidative membrane damage stress (Singh et al., 2013). Stress re-
sistance transcripts are extensively translated in the presence of high
eIF3g protein levels. However, similar increase of general stress toler-
ance was found by just increasing global translation rate or when other
initiation factors were overexpressed (Sun and Hong, 2013; Wang et al.,
2012).

Plant eIF3g is also a target of several viral proteins. The CaMV trans-
activator protein (TAV) controls reinitiation after long uORF on the
viral transcript by recruiting eIF3 through interactions with eIF3g and
plant specific reinitiation supporting protein (RISP) (Park et al., 2001;
Ryabova et al., 2004; Thiébeauld et al., 2009). The strawberry vein
banding virus (SVBV) trans-activator protein P6 also interacts with
Fragaria vesca FvEIF3G, reducing the trans-activation activity of the P6
protein by this interaction (Li et al., 2018). In a Papaya ringspot virus
(PRSV) study done with Carica papaya, CpEIF3G mRNA level was in-
creased 2–4.5x during PRSV infection. Viral nuclear inclusion protein
(Nia-Pro) of the PRSV virus also interacts with central domain of
CpEIF3G and decreases the CpEIF3G availability for the eIF3 complex
by this interaction (Gao et al., 2015). Overall, these studies suggest that
plant eIF3g might also play a role in translation efficiency during biotic
stress as well, where viral protein target specifically the eIF3g to de-
crease the eIF3g-mediated enhancement of the translation of defense
proteins.

3.8. eIF3h

eIF3h is s MPN domain containing subunit. eIF3h is encoded by a
single gene in Arabidopsis, and its product, AtEIF3H is dispensable for
the basal eIF3 function in Arabidopsis (Kim et al., 2004). However,
ateif3h insertion mutant has severe phenotype defects of pleiotropic
postembryonic growth, female fertility, sugar sensitivity and pollen
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fitness that altogether lead to seedlings lethality (Kim et al., 2004; Roy
et al., 2011). Some of these growth defects also altered the response to
auxin. To surpass the seedlings lethality, addition of sucrose to the
growth media partially rescued the plants, enabling them to reproduce
(Kim et al., 2004). The phenotype is caused by the loss of ability to
stimulate the translation efficiency of specific transcripts, which con-
tain one or more inhibitory uORFs in their 5′ leader sequences by
participating in reinitiation promotion on major ORF after termination
event on short uORF. In Arabidopsis, over 30% of transcripts possess at
least one uORF (Kim et al., 2007). A plant model for eIF3h translation
regulation is the ATB2 gene that encodes the Arabidopsis thaliana basic
leucine zipper protein 11 (AtBZIP11), a sugar sensitive transcription
factor that activates genes involved in amino acid and sugar metabo-
lism (Hanson et al., 2008; Ma et al., 2011). The mRNA has a long 5′
leader that contains five uAUGs in four uORF. uORF1 has a weak
context start codon and is mostly skipped by leaky scanning. When
uORF1 is skipped, uORF2a/2b is translated from strong uAUGs. Short
translation event on uORF2 disables initiation on uORF3 and uORF4
because their start codons overlap with uORF2. After translation of
uORF2 is terminated, ribosome reinitiate on mORF to produce
AtBZIP11 (Roy et al., 2010). In ateif3h mutant, reinitiation events de-
crease after uORF2, as well as polysomal occupancy on AtBZIP11
transcript. As a consequence, downregulation of AtBZIP11 protein level
is observed. Stalled ribosomes are found to be more associated with
coding uORFs (Hou et al., 2016), suggesting this regulatory mechanism
is used more widely. In over 250 genes translationally downregulated in
ateif3h, gene classes of transcriptional regulators and protein modifying
enzymes are enriched (Kim et al., 2007; Roy et al., 2010; Tiruneh et al.,
2013). Several bZIP family genes are involved in low or high sugar
responses and possess uORFs (Wiese et al., 2005), explaining why
mutant seedlings were sensitive to various sugar levels (Kim et al.,
2004). The eIF3h is also needed for the CLAVATA3-WUSHEL auto-
regulatory negative feedback loop, the well-known regulation of shoot
apical meristem (SAM) size and functionality (Reviewed in Somssich
et al., 2016). In this case, CLV1 receptor is restrained on the transla-
tional level. Four uORFs in the CLV1 5′ leader inhibit mORF translation.
With reinitiation events inhibited in ateif3h mutant, the CLV1 protein
level is downregulated, disrupting the inhibition ofWUS in the negative
feedback loop., SAM is indeed enlarged in the mutant, quiescent and
has a different dome-like shape than normal SAM (Zhou et al., 2014).
Analogically, the translation rate of the auxin response factors (ARFs)
class of transcription factors with diverse uORFs is downregulated in
ateIF3h mutant (Zhou et al., 2010), as well as the adaxializing tran-
scription factor, ASYMMETRIC LEAVES1 (AS1), that possess three in-
hibitory uORFs and whose mutant has similar defects in leaf mor-
phology as in ateIF3h mutant (Zhou et al., 2014). Ensuring control over
such key developmental factors, AtEIF3H function is also controlled by
Target of rapamycin kinase (TOR kinase). Stimulated TOR kinase binds
to translation initiation complexes or polysomes and activates kinase
S6K1, which then phosphorylates AtEIF3H to increase its ability to
promote reinitiation after uORF (Schepetilnikov et al., 2013, 2011).

Taken together, plant eIF3h does not change global translational
levels, but its presence is essential to overcome the inhibitory effects of
uORFs in 5′ leaders on specific genes that regulate metabolism, stem
cell maintenance and organogenesis. Similar phenotypes and involve-
ment in uORF regulated translation were found in some mutants of
ribosomal proteins, RPL4A, RPL4D, RPL5A, RPL24B (Nishimura et al.,
2005; Rosado et al., 2012; Tiruneh et al., 2013; Zhou et al., 2010),
suggesting a tight cooperation between large ribosomal subunits and
eIF3 in reinitiation.

3.9. eIF3i

The eIF3i subunit contains a WD40 domain and is a part of the YLC
module. eIF3i is also considered the most conserved subunit of the eIF3
complex, its respective homolog was found even in Archaea (Benelli and

Londei, 2011; Rezende et al., 2014). eIF3i is encoded by two duplicate
genes in Arabidopsis, AtEIF3I1 and AtEIF3I2, that form direct tandem
repeat on the chromosome 2, with only 517 bp between them. The
common eIF3 gene expression pattern was observed in gene expression
analyses (Jiang and Clouse, 2001).

Arabidopsis ateif3i knock down RNAi lines lead to severe develop-
mental defects; seeds exhibited delayed germination, seedlings had
dwarf phenotype and died before growing first true leaves. For some
seedlings that survived, developmental malformations in leaf mor-
phology, apical dominance and aberrant flower development were
observed (Jiang and Clouse, 2001; Roy, 2010). However, any tran-
scriptomic or proteomic data are missing to investigate the eIF3i impact
on translation. It was also shown that eIF3i transcription is regulated by
brassinosteroids (Jiang and Clouse, 2001). Adding brassinosteroids in-
creased the level of the Phaseolus vulgaris PVEIF3I mRNA in bean, to-
bacco cells and Arabidopsis seedlings (Jiang and Clouse, 2001). More-
over, eIF3i was phosphorylated in vitro by
BRASSINOSTEROID-INSENSITIVE 1 (BRI1) receptor serine/threonine
kinase (Ehsan et al., 2005), suggesting brassinosteroids control eIF3i
activity also post-translationally. In mammals, eIF3i is phosphorylated
by transforming growth factor beta (TGF-β) receptor kinase and
thereafter modulates TGF-β response (Choy and Derynck, 1998). Sup-
porting to the role of eIF3i in translation regulation of proliferative
genes, eIF3i dysregulation was shown in various types of cancer (Ali
et al., 2017). The link between both mammalian and plant eIF3i or-
thologues is the similarity between cytoplasmic domains of both BRI1
and TGF-β receptor kinases, both having eIF3i as a substrate of phos-
phorylation. However, no study identified how brassinosteroids or eIF3i
phosphorylation affects the function of eIF3i within the eIF3 complex
and if that modulates the initiation in any way.

3.10. eIF3k, eIF3l and eIF3m

eIF3k, is a PCI domain containing eIF3 subunit encoded by a single
gene in Arabidopsis. The insertion mutant of ateif3k had no effect on the
phenotype or the translational efficiency of AtBZIP11, a marker for
eIF3-mediated specific translational regulation (Roy, 2010; Tiruneh
et al., 2013). AtEIF3K protein was identified as a ubiquitin-conjugate
(Kim et al., 2013). eIF3l and eIF3m are the two remaining PCI domain
subunits of the eIF3 complex, both encoded by two genes in Arabidopsis.
AtEIF3L1 was identified as a ubiquitin-conjugate (Kim et al., 2013) but
no characterization was done for any eIF3l gene in plants. Single in-
sertion mutants and double mutants lacked any observable difference in
the phenotype (Roy, 2010).

4. Conclusions

Recent studies have already outlined the vast complexity of trans-
lation regulation in plants (Merchante et al., 2017). However, in the
contrast with the understanding and complexity of transcription reg-
ulation, our knowledge around translation and its regulation is still
merely scratching the surface, being limited mostly by the available
technology. More advanced methodologies to study the translation are
therefore rapidly emerging and will answer more questions in the
nearest future, as well as improving even more (Mazzoni-Putman and
Stepanova, 2018). Across the eukaryotic kingdom, the eIF3 complex is
mostly studied in yeast and mammals, where the individual subunits
show essential regulatory roles in changing the translation efficiency of
specific developmental regulators. Their mutations or protein level
dysregulation, for example in human, cause numerous developmental
dysfunctions and were found in various types of tumors (Reviewed in
Gomes-Duarte et al., 2018). Although plants and mammals are evolu-
tionary very distinct eukaryotic organisms, the general function and
resemblance of the complex is conserved.

In plants, a similar role for the eIF3 subunits participating in post-
transcriptional regulation is undoubtedly confirmed, but still only little
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is known about the exact mechanisms. Several single subunit mutants
were characterized in plants and proven to regulate translation during
stress response and are affecting vegetative development, as well as the
plant gametophytic generation. However, no studies tried to combine
any single subunit mutants in the Arabidopsis. For the subunits encoded
by two genes in Arabidopsis, there has been no evidence for any double
mutant up to date. What differences will appear in multiple subunit
dysfunction is a question for future research. A new detailed interaction
and structural research on eIF3 in plants should bring out new under-
standings of mechanisms in the described regulatory function, and/or
answers about the differences between the so far consistent eIF3 models
from different organisms. Also, many post-translational modifications
of the plant eIF3 subunits emerged from high-throughput studies and
indicated that the additional regulatory functions are under control of
phytohormones or might emerge during abiotic or biotic stress re-
sponses. To add more to the possible complexity of plant eIF3 and its
specialized role in translation, an interesting field for future research is
also the existence of distinct eIF3 subcomplexes, as they were found
able to perform at least the general eIF3 functions. Whether such sub-
complexes are just yet unassembled, or they do have non-identical
functions in the translation during different developmental stages or
stress, is not known.
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